
Interactive Problem Solving in the Classroom:
Experiences with Turing Arena Light in Competitive

Programming Education

Giorgio Audrito, Luigi Laura, Alessio Orlandi,
Dario Ostuni, Romeo Rizzi, and Luca Versari

19th IOI Conference, Sucre (BO)
Wednesday, July 30, 2025

1 / 29

Introduction • ◦ ◦◦

Introduction

Turing Arena light

What if we want to use a competitive programming judging system as a teaching
tool?

We can use already existing systems:

CMS, DOMjudge: hard to set up, not trivial to write problems

Codeforces, Kattis: rigid problem format, cannot host privately

Terry: setup made for contests, cannot have interactivity

2 / 29

Introduction • • ◦◦

Goals

The key goals for such a system are:

Easy to set up

Easy to write problems

Easy for students to use

Flexible problem format

Unlimited feedback capability

Extensible to new features

3 / 29

Introduction • • •◦

Turing Arena

A first attempt was made with Turing Arena.

It was started in 2019 and had much bigger goals.

However, it was too complex and hard to maintain.

Development completely ceased in 2022.

A new requirement was needed: keep it simple.

4 / 29

Introduction • • ••

Turing Arena light

Turing Arena light was started as the spiritual successor.

The rationale was to try to achieve the same goals, while keeping it as simple as
possible.

This was done both in the design and in the implementation of the system.

5 / 29

System Design • ◦ ◦ ◦ ◦

Turing Arena light Design I

The fundamental idea behind Turing Arena light is to just have two programs that
talk to each other: manager and solution.

The manager and the solution communicate through standard input and output.

The manager is responsible for writing the input for the problem, then reading and
scoring the output of the solution.

6 / 29

System Design • • ◦ ◦ ◦

Turing Arena light Design II

The solution, just like in any other judging system, reads the input of the problem,
and outputs the solution.

Thus, a problem is defined by a manager, plus some metadata.

Turing Arena light is an infrastructure to make this communication easy to setup.

7 / 29

System Design • • • ◦ ◦

Turing Arena light Design III

This kind of paradigm is already implemented in judging systems, such as CMS.
However, we want to be able to decide where the solution and manager are run.

One limit of systems such as CMS in a teaching context is that the solution is
always run on the server, which makes it much harder to debug.

8 / 29

System Design • • • • ◦

Turing Arena light Design IV

Possibly, we would like to be able to run the solution locally on the client, like it
happens in Terry. However, one limit of Terry is that we would lose the ability to
have interactive problems.

Turing Arena light brings these two paradigms together. It does so with two
components, one client-side and one server-side, attached to the solution and
manager respectively.

9 / 29

System Design • • • • •

Turing Arena light Design V

10 / 29

System Implementation • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦

Turing Arena light Implementation I

In Turing Arena light, problems are implemented through services. A service
defines:

the manager program (also called evaluator);

the parameters for the manager (strings or files);

This information is contained inside a meta.yaml file, along with an attachments
directory, which usually contains the statement of the problem.

11 / 29

System Implementation • • ◦ ◦ ◦ ◦ ◦ ◦ ◦◦

Turing Arena light Implementation II

An example of a meta.yaml file:

meta.yaml

public_folder: public

services:

solve:

evaluator: [python , manager.py]

args:

size:

regex: ^(small|big)$
default: big

files:

- source

12 / 29

System Implementation • • • ◦ ◦ ◦ ◦ ◦ ◦◦

Turing Arena light Implementation III

Turing Arena light is implemented as two components written in Rust:

rtal: it’s the client component, it connects to the server, runs the solution
and mediates the communication;

rtald: it’s the server component, given a directory of problems serves them,
spawns the appropriate manager when asked and mediates the
communication.

All network communication is done through WebSocket.

13 / 29

System Implementation • • • • ◦ ◦ ◦ ◦ ◦◦

Turing Arena light Implementation IV

14 / 29

System Implementation • • • • • ◦ ◦ ◦ ◦◦

Turing Arena light Implementation V

Both components have a command-line interface.
Starting the server can be done with:

$ rtald -b 0.0.0.0 -d problems

Running a solution can be done with:

$ rtal -s ws://address connect problem -- ./solution

15 / 29

System Implementation • • • • • • ◦ ◦ ◦◦

Turing Arena light Implementation VI

rtal, the implementation of Turing Arena light, only defines the communication
protocol, but says nothing about the problem format. Thus, it only defines the
core of Turing Arena light.

While this allows maximum flexibility, it also means a lot of boilerplate code is
needed to write a problem.

Thus, rtal allows for manager libraries to be written.

16 / 29

System Implementation • • • • • • • ◦ ◦◦

Turing Arena light Implementation VII

TC.py and TC.rs were written to implement a Terry-like problem format for
Python and Rust managers, respectively.

Other than allowing to write a problem in few lines of code, they also support
authentication, standardized scoring and saving of the results in a database.

Note that the full implementation of TC.py is only 66 SLOCs and TC.rs is
only 144 SLOCs.

17 / 29

System Implementation • • • • • • • • ◦◦

Turing Arena light Implementation VIII

The size in Single Lines of Code of various judging systems:

Judge System SLOCs
CMS 67,147
DOMjudge 94,542
Terry 15,766
Turing Arena 54,421
rtal v0.1 978
rtal v0.2 2,202

18 / 29

System Implementation • • • • • • • • •◦

Turing Arena light Implementation IX

While the rtal client is a command-line tool, a graphical interface was also
developed by the university community.

Since rtal only defines the communication protocol, anyone can implement a
client for it.

TAlight Desktop is a graphical client that runs in the browser and is able to run
Python solutions directly in the browser.

19 / 29

System Implementation • • • • • • • • ••

Turing Arena light Implementation X

20 / 29

User Experience • ◦ ◦ ◦ ◦ ◦ ◦◦

Turing Arena light Experience I

Turing Arena light has been used in several courses at the University of Trento,
including:

Algorithms and Data Structures (Bachelor’s degree)

Competitive Programming (Master’s degree)

Advanced Programming (Bachelor’s degree)

It has been used by more than 500 students in total.

21 / 29

User Experience • • ◦ ◦ ◦ ◦ ◦◦

Turing Arena light Experience II

Turing Arena light has been used in the Sfide di Programmazione course at the
University of Verona for both lab exercises and exams.

While being used there we built a repository of over 20 problems and we collected
feedback from the students.

It has been subsequently used in the Fondamenti di Algoritmi, Complessità e
Problem Solving course at the University of Verona, with a repository of over 140
problems.

22 / 29

User Experience • • • ◦ ◦ ◦ ◦◦

Turing Arena light Experience III

23 / 29

User Experience • • • • ◦ ◦ ◦◦

Turing Arena light Survey I

How much did you like the problems available in Turing Arena light?

24 / 29

User Experience • • • • • ◦ ◦◦

Turing Arena light Survey II

How difficult did you find the problems proposed with Turing Arena light?

25 / 29

User Experience • • • • • • ◦◦

Turing Arena light Survey III

Did you find the interactive problems more interesting than the regular ones?

26 / 29

User Experience • • • • • • •◦

Turing Arena light Survey IV

How hard was to use Turing Arena light (rtal)?

27 / 29

User Experience • • • • • • ••

Turing Arena light Survey V

How strongly would you like for Turing Arena light to have a graphical user
interface?

28 / 29

Conclusion •

Conclusion

On the technical side, while flexibility is good for experimenting, some
features would need some standardization to move forward, such as time
measurement.

As for the user experience, the feedback was quite positive, the students were
engaged and the problems were well received.

As of now, rtal has been forked and new features are being developed by
the community, both teachers and students.

29 / 29

Conclusion •

Conclusion

On the technical side, while flexibility is good for experimenting, some
features would need some standardization to move forward, such as time
measurement.

As for the user experience, the feedback was quite positive, the students were
engaged and the problems were well received.

As of now, rtal has been forked and new features are being developed by
the community, both teachers and students.

29 / 29

Conclusion •

Conclusion

On the technical side, while flexibility is good for experimenting, some
features would need some standardization to move forward, such as time
measurement.

As for the user experience, the feedback was quite positive, the students were
engaged and the problems were well received.

As of now, rtal has been forked and new features are being developed by
the community, both teachers and students.

29 / 29

	Introduction
	slide
	slide
	slide
	slide

	System Design
	slide
	slide
	slide
	slide
	slide

	System Implementation
	slide
	slide
	slide
	slide
	slide
	slide
	slide
	slide
	slide
	slide

	User Experience
	slide
	slide
	slide
	slide
	slide
	slide
	slide
	slide

	Conclusion
	slide

